Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\operatorname{Bis}\left(\mu\right.$-diphenylphosphinato- $\left.\kappa^{2} O: O^{\prime}\right)$ -bis[aqua(diphenylphosphinato-кO)-bis(pyridine- κN)cobalt(II)]

Liange de Oliveira Diehl, Márcia R. Siqueira and Robert A. Burrow*

Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97119-900, Brazil
Correspondence e-mail: rburrow@ewald.base.ufsm.br

Received 22 December 2005
Accepted 6 January 2006
Online 21 January 2006
In the centrosymmetric title compound, $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{P}\right)_{4}\right.$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], each approximately octahedral Co atom features two trans-coordinated pyridine molecules, one water molecule, a terminally coordinated monodentate diphenylphosphinate ligand, and two bidentate diphenylphosphinate ligands that bridge the two Co atoms across a centre of inversion to form a dimeric binuclear complex. The discrete molecules are linked by double hydrogen bonds between the terminally coordinated diphenylphosphinate ligand and the
water molecule to form a continuous chain along the crystallographic b axis.

Comment

Phosphinate ligands have a rich coordination chemistry, often forming polymeric species (Vioux et al., 2004). Coordinating solvents can be used to dissolve these phosphinate-bridged coordination polymers, in a process that breaks the coordination chains, to form oligomeric or monomeric solvent adducts in solution (Siqueira et al., 2006). We have investigated the possibility of forming the pyridine adduct of the diphenyl-phosphinate-bridged coordination polymer of $\mathrm{Co}^{\mathrm{II}}$. However, due to the presence of opportunist water, the title compound, (I), a molecular species incorporating both pyridine and water, was formed, and we present its crystal structure here.

(I)

One half-molecule of (I) is found in the asymmetric unit; the entire molecule is generated by the crystallographic centre of inversion, which lies at the mid-point between the two Co

Figure 1

The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry-equivalent phenyl groups are shown as sticks. [Symmetry code: (i) $-x, 2-y, 1-z$.]
atoms (Fig. 1). Two diphenylphosphinate ligands bridge the two Co atoms to form an eight-membered ring. The octahedral coordination sphere is completed by two trans pyridine ligands, a water molecule, and a terminally coordinated monodentate diphenylphosphinate ligand.

The very long Co \cdots Co distance in (I) (Table 1) precludes metallic bonding. This distance is slightly longer than that in the parent coordination polymer [4.704 (5) Å; Liu et al., 1992]. The very slightly different $\mathrm{Co}-\mathrm{O}$ distances involved in the bridging diphenylphosphinate ligand in (I) are considerably longer than those for the parent polymer [1.905 (16)1.927 (16) \AA], which is likely to be due to the change from tetrahedral to octahedral geometry of the Co centre. The $\mathrm{P} \cdots \mathrm{O}$ distances are almost equal, showing a delocalization of the negative charge. The monodentate diphenylphosphinate ligand has a slightly longer $\mathrm{P}-\mathrm{O}$ bond for the O atom coordinated to the Co centre than for the non-coordinated O atom, consistent with a partial localization of the negative charge on the O atom that forms the formally covalent bond. These values correspond well to the few examples found in the Cambridge Structural Database (Version 5.26, update of August 2005; Allen, 2002), where the average terminal $\mathrm{P} \cdots \mathrm{O}$ distance is $1.500(13) \AA$ and the coordinated $\mathrm{P} \cdots \mathrm{O}$ distance is 1.514 (15) \AA for 14 observations.

The pyridine molecules are coordinated to the Co centre, with $\mathrm{Co}-\mathrm{N}$ distances identical to within experimental error and $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angle close to the ideal value of 180°. The rings are rotated by $66.96(7)^{\circ}$ with respect to one another but are almost perpendicular to the CoO_{4} plane, with angles of $86.71(5)^{\circ}$ for the N11-containing pyridine ring and $89.51(5)^{\circ}$ for the N21-containing ring.

A water molecule, presumably present in the methanol preparation solvent, completes the coordination sphere of the Co centre, preventing the formation of a polymeric chain as found for similar solvent adducts of coordinating polymers (Siqueira et al., 2006). Double hydrogen bonds between the terminal diphenylphosphinate ligand and the water molecule across a centre of inversion (Table 2) link discrete molecules to form a continuous chain along the crystallographic b axis (Fig. 2). The water molecule also participates in an intramolecular hydrogen bond to the terminal O atom of a neighbouring diphenylphosphinate ligand, presumably stabilizing the monodentate coordination mode.

Figure 2
A view of the hydrogen bonding in (I) (dashed lines). [Symmetry codes: (i) $-x, 2-y, 1-z$; (ii) $-x, 1-y, 1-z$; (iii) $x, y-1$, z.]

Experimental

$\mathrm{Co}\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)_{2}$ was suspended in methanol and pyridine was added dropwise until the blue solid disappeared and the solution was clear light-pink in colour. Red crystals of (I) formed on slow evaporation of the solution.

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{P}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$Z=1$
$M_{r}=1338.97$	$D_{x}=1.374 \mathrm{Mg} \mathrm{m}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.7871(4) \AA$	Cell parameters from 8177
$b=11.8221(4) \AA$	reflections
$c=12.7061(5) \AA$	$\theta=3.0-25.9^{\circ}$
$\alpha=91.609(2)^{\circ}$	$\mu=0.67 \mathrm{~mm}^{-1}$
$\beta=90.390(2)^{\circ}$	$T=294(2) \mathrm{K}$
$\gamma=92.774(2)^{\circ}$	Rectangular plate, red
$V=1617.77(10) \AA^{\circ}$	$0.25 \times 0.15 \times 0.07 \mathrm{~mm}$

Data collection

Bruker X8 Kappa-APEX-II CCD area-detector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2004); values
rescaled by 0.95
$T_{\text {min }}=0.745, T_{\text {max }}=0.950$
30066 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0464 P)^{2} \\
&+0.0829 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.091$
$S=1.06$
flections
6553 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=29.6^{\circ}$
$h=-15 \rightarrow 14$
$k=-16 \rightarrow 16$
$l=-17 \rightarrow 15$

9046 reflections
405 parameters
H atoms: see below

Table 1

Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Co1-O1	2.2076 (12)	$\mathrm{Co} 1-\mathrm{Co1} 1^{\text {i }}$	5.0718 (4)
Co1-O11	2.0687 (11)	P1-O11	1.5004 (11)
Co1-O12 ${ }^{\text {i }}$	2.0615 (10)	P1-O12	1.4944 (11)
Co1-O21	2.0957 (10)	P2-O21	1.5081 (11)
Co1-N11	2.1736 (12)	$\mathrm{P} 2-\mathrm{O} 22$	1.4982 (12)
Co1-N21	2.1740 (12)		
$\mathrm{O} 11-\mathrm{Co} 1-\mathrm{O} 12{ }^{\mathrm{i}}$	98.71 (4)	$\mathrm{O} 21-\mathrm{Co} 1-\mathrm{N} 21$	91.15 (5)
$\mathrm{O} 12{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 21$	90.72 (4)	O11-Co1-O1	86.42 (5)
O11-Co1-O21	170.41 (4)	O21-Co1-O1	84.18 (5)
$\mathrm{O} 12{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 11$	91.74 (5)	N11-Co1-O1	87.34 (5)
O11-Co1-N11	92.90 (5)	N21-Co1-O1	91.56 (5)
$\mathrm{O} 21-\mathrm{Co} 1-\mathrm{N} 11$	88.52 (5)	$\mathrm{O} 11-\mathrm{P} 1-\mathrm{O} 12$	118.11 (6)
$\mathrm{O} 12{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 21$	89.33 (5)	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 22$	117.37 (6)
O11-Co1-N21	87.26 (5)		

Symmetry code: (i) $-x, 2-y, 1-z$.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{O} 22$	$0.81(3)$	$2.02(3)$	$2.8072(18)$	$163(3)$
O1-H1B $\cdots 2^{\text {ii }}$	$0.93(2)$	$1.84(2)$	$2.7464(17)$	$165(2)$

Symmetry code: (ii) $-x, 1-y, 1-z$.

All H atoms on the phenyl and pyridine rings were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecule were found in a difference Fourier map and allowed to refine freely.

Data collection: COSMO (Bruker, 2004), APEX2 (Bruker, 2004) and BIS (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant Nos. 478831/2003-0 and 475294/2004-1) and the Coordenação de Aperfeiçoamento de Pessoa de Nível Superior (CAPES) is gratefully acknowledged, as are fellowships (to RAB and MRS) from CNPq. The diffractometer was funded by a CTINFRA grant from the Financiadora de Estudos e Projetos (FINEP).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1241). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2004). APEX2 (Version 1.0.22), COSMO (Version 1.48), SAINT (Version 7.06A), SADABS (Version 2.10) and BIS (Version 1.2.08). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Liu, S.-J., Staples, R. J. \& Fackler, J. P. (1992). Polyhedron, 11, 2427-2430.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. \& Burrow, R. A. (2006). Inorg. Chem. Commun. Submitted.

Vioux, A., Le Bideau, J., Mutin, P. H. \& Leclerq, D. (2004). Top. Curr. Chem. 232, 145-174.

